-
Comments: This message was transferred to Usenet via mail2news gateway at
<m...@n...net>. Please send questions and concerns to
<a...@n...net>. Report inappropriate use to <a...@n...net>.
Message-ID: <2...@m...net>
From: D <n...@m...net>
Injection-Date: Sat, 11 May 2024 15:15:01 +0000 (UTC)
Injection-Info: neodome.net; posting-account="mail2news";
key="CZx9kzeu75AQqau3TsWm/r0AGbxxUL0+/rIANaiMWppjGsGsQYz2LJdysomhum4AwXx2qe
PPfQd3pFViB4oc9gmnf2ErQOAPVRrqUQZrEGXNUkpc3wShc2DKIOd5eB8Y0+VPAqiheeSIge0vJ
VbJnToZHF/2L8XdKuUgLonjd7JYd0YvoheWBOhvfzpVLIP74bFrGygT571W4ifM5cjBkqjsI+7Z
pd2OXoUciWOG5OH7aNApp3vTAB5fyjUSmy+pkUufdTxWuMHCvbIAWI7ubnGflL84Il4xxo3FaGo
/sc/V+Gv7xkN6euisg51Jl8pa92oeNYMsbLXMRE+rHRhW2g==";
data="U2FsdGVkX1/EWtgcg2VS8xou9Lo7eQxzj3PHRCynfO65g9pqHCB5w6/culVrcAm1RgOLY
kSntxdtcX1EVwAREI+4wa9P1tExEiHhSp7pjYKnO0WiPhWPfPIwrYZ+B8rRLXFkdSnYeyvt7MDP
3+pGF/Sq6/uwGSKCgq6U9IF0VV3aOlX8+dpb7GFwxM/JAFBUUz9ihIsK6t2G7zWDLRn1ZvryLHq
KZfAdvgxexUvZ0+FziFLB5y9qlppnatfl7NvJ1S7PHiiIZ/ARBx+cKYundiJK8n0YzzungU3a9+
wkNZ4FQaRlgWlHJtUvMewIlncJ3AXImkYHo+Q5FqAkFyVfUD+tiHjGagiocnhz+F7Ib5heIz3qL
c2MWRjJ1qX1MLZuxFG/SAbjIa/MJ/bW68uPvSfTiMPkxPvY+lFxqkzex89fGEUPj99e4bzMuZvI
7n0WThEe0nJXb5yhBK8B5KfuD2LPVprlipCsOmj6RZVEnb46Rss6MZRLrK10XALR+MiksA62Efa
gp3yC2R6uP3LtOs4sQCesQ3Y8MGoE1X/88ty7KLTJKn3SO+WV0N9Hbk5EBAJOdVMfkaC870U5XM
TpCHSxWr4byDxG5HoYiyzeTANAvP5S3loS6OhGlmhP7uGAId+2+rn5q6da2XX0iFgGukQcvlkxJ
tgjU33R2WcL8sXtlIRdXbYozbRMMNfY0qWkI8PkevL9gjf/n1GMRocMAZsoSK60nhhH2CQPRgPU
VWgKx/RM2++D2rR7PCR3xcphMODmEVjP94X4Pf1/fBZBettyyeqZ1EiGdmzqKh6DD3vlBkTYGLh
icsu8hda21VnlDhvdAdkwpviCqI4XRwKQbxoIJCsUJeD5VtDa16Vgs3aUQItqr/IM6uSk+H1QuZ
zcJe9qW9yNPFO2538ylWzHKBNAAdhNUkuVQQvjWkbk80RC9a5Rmz2IQaggpkxaJu7YD2eY9aUDh
QxaUFAom5m7yokPgG5DLIyaYViCy6KLAFdMiprTB/Nrngyr4E+5RCAYdQh2/jMhA8kV+dxRQKGP
/ruW4Omn2bghiDyD43vzVFMjn+HcHKKfZK1HGlo0alGrg8u45Jqiv2GYDIAOwuEGV+MW/ejgqFl
1Ue0chBFDTwExWZLtrtquMHZaokf/ze5wafIaPGZLbphlhrBF6A9SeAgCdSR3jzIwCg6elt0n8k
eQ66NDlnnxdoru4JJW+RObm922BKI6O6JqO5/QpPUuY2m/g5Wuw2IghvJPKFKj9GmdWOKAGVJlt
OsQK50TpmhjT3oPDYofl9jZgq48AcxtFiwB6UXTJ881AHUPjxRnGf3Ov8wenxzh9o/3Kscqc5mR
9bpf8N4q56ppChgXfSQKTiREJsqFwt6wNLzY9c+o2fgsbYq6YFfdkNumIEiQhHn487FEFQobGj3
IpwLqJiixYdpYjzPG7yC04Xjq1gaH5pTHbs3wSJriR4V5SLw6Sdl1jGhF4XqYjPB1/ay2m2+9Nx
ZBvp2AGKrnbtNHHjNkQySiTBwL8FPJFAXrQtw5jvBJx48KNpKN5FybgS4PLkTUe6pFD0lMpwxTl
gyvWAM7pZ86Lti6jwFxQkmYOkbnYuUC/MGnLXUC7stXNBgJM+bOZtUkT5oKA0Yuqeda+8AnsEkg
x6ztgN5bDiVif9C2vQkTqQ+KwUxJneG6VuPSwlK06KdMM3vWUgMVHVEFEdP7KFq5jx4Mx8zEish
wVoYiAjH9i8XT2RRHiv3NBbIUg3Dxg3LWxEdufI3obtKSFn4d+8A=";
mail-complaints-to="a...@n...net"
Path: news-archive.icm.edu.pl!news.icm.edu.pl!fu-berlin.de!border-2.nntp.ord.giganews
.com!nntp.giganews.com!news.mixmin.net!sewer!news.neodome.net!mail2news
Content-Transfer-Encoding: 7bit
Date: Sat, 11 May 2024 16:10:33 +0100
Newsgroups: pl.soc.prawo.podatki
Subject: Vitruvian Man - parts 1-6
Lines: 226
Xref: news-archive.icm.edu.pl pl.soc.prawo.podatki:248909
[ ukryj nagłówki ]
Wikimedia Commons - Da Vinci Vitruve (photo L. Viatour) 2,258 x 3,070 pixels, 5.81
MB:
https://upload.wikimedia.org/wikipedia/commons/2/22/
Da_Vinci_Vitruve_Luc_Viatour.jpg
crude photo correction:
http://rawtherapee.com/
rotate -0.62
horizontal +0.7
vertical +0.5
save PNG
(35.56 MB)
import into inkscape:
https://inkscape.org/
skew +0.3h
width ~98.7
height 100.0
grid 20x20
square 16x16
"Vitruvius, the architect, says in his architectural work that the measurements
of man are in nature distributed in this manner, that is 4 fingers make a palm,
4 palms make a foot, 6 palms make a cubit, 4 cubits make a man, 4 cubits make
a footstep, 24 palms make a man and these measures are in his buildings. If you
open your legs enough that your head is lowered by 1/14 of your height and raise
your arms enough that your extended fingers touch the line of the top of your
head, let you know that the center of the ends of the open limbs will be the
navel, and the space between the legs will be an equilateral triangle"
+---+---+---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---+---+---+
| | | | | | | | | | - | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---+---+---+
| | | | | | | | | | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---+---+---+
| | | | | | | | | | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---+---+---+
| | | |<------------------------100 deg-------------------------->| | | |
+---+---+-x-----------------------------------------
------------------x-+---+---+
| | | \ | | | | | | | | | | | | | | | / | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | \ | | | | | | | | | | | | | / | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | | \ | | | | | | | | | | | / | | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | | | \ | | | | | | | | | / | | | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | | | | \ | | | | | | | / | | | | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | | | | | \ | | | | | / | | | | | | | |
+---+---|---+---+---+---+---+---+---+---.---+---+---
+---+---+---+---+---|---+---+
| | | | | | | | | \ | | | / | | | | | | | | |
+---+---|---+---+---+---+---+---+---+-------+---+---
+---+---+---+---+---|---+---+
| | | | | | | | | | \ | / | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---x---+---+---
+---+---+---+---+---+---+---+
| | | | | | | | | | / | \ | | | | | | | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | | | | | | / | | | \ | | | | | | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | | | | | / | | | | | \ | | | | | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | | | | / | | | | | | | \ | | | | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | | | / | | | | | | | | | \ | | | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | | / | | | | | | | | | | | \ | | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | | / | | | | | | | | | | | | | \ | | | |
+---+---|---+---+---+---+---+---+---+---+---+---+---
+---+---+---+---+---|---+---+
| | | / | | | | | | | | | | | | | | | \ | | |
+---+---x-------------------------------------------
--------------------x---+---+
* angle between extended middle finger tips tangent circle-square intersections
is actually 100 degrees; navel at center of circle is 1 1/2 times higher than
1/14 of man's height; angle between raised legs at calf muscle is actually 60
degrees as measured from the center of the square; also, angle between raised
legs at center of ball of foot is 60 degrees as measured from center of circle;
* the line segment between center of circle and center of square is the opposite
side of a right triangle, with adjacent side the horizontal circle radius, and
hypotenuse from the center of the square to the end of that same circle radius,
the angle of which is 80 degrees; the center of square is 2 cubits above floor
line, and its base is tangent to the base of circle at the vertical centerline;
thus solving for "y": y/(y + 2) = tan 10; y = ~0.428148 cubits; 4 cubits/14 is
~0.285714, for a ratio of ~1.49852; very nearly 1 1/2 times higher than "1/14";
* circle radius 2 + y = ~2.428148 cubits; circle diameter 2y + 4 = ~4.856296 cu-
bits; circle area (2 + y)^2 * pi = ~18.522525 square cubits; top of circle is
2y = ~0.856296 cubits above square, segment chord 4 * sqrt(2y) = ~3.701451 cu-
bits, central angle is 2 * arctan (2 * sqrt(2y)/(2 - y)) = ~99.316396 degrees
(inside edge extended middle finger tips); 1 finger is 1/24 cubit = ~0.041667
cubits; 1 palm is 1/6 cubit = ~0.166667 cubits; 1 foot 4/6 = ~0.666667 cubits;
* simplifying the value of "y", y/(y+2)=tan(10): y = 2sin(10)/(cos(10)-sin(10));
circle chord at top of square = 8sqrt(sin(10)/(cos(10)-sin(10))) = ~3.701451;
2arcTan((cos(10)-sin(10))sqrt(sin(10)/(cos(10)-sin(1
0)))/(cos(10)/2-sin(10)))
is central angle of top circle sector ~99.316396 degrees; top circle sector
area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arcTan((cos(10)-si
n(10))sqrt(sin(10)
/(cos(10)-sin(10)))/(cos(10)/2-sin(10)))/180 = ~5.109973 square cubits; top
circle segment area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arcTan((cos(10)-si
n
(10))sqrt(sin(10)/(cos(10)-sin(10)))/(cos(10)/2-sin(
10)))/180+(8sin(10)/(cos
(10)-sin(10))-8)sqrt(sin(10)/(cos(10)-sin(10))) = ~2.200907 square cubits;
* circle chord at side of square = 2sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4) =
~2.753836; central angle of side circle sector = 2arcTan(sqrt((2sin(10)/(cos
(10)-sin(10))+2)^2-4)/2) = ~69.091629 degrees; side circle sector area = pi
(2sin(10)/(cos(10)-sin(10))+2)^2arcTan(sqrt((2sin(10
)/(cos(10)-sin(10))+2)^2
-4)/2)/180 = ~3.554865 square cubits; area of side circle segment = pi(2sin
(10)/(cos(10)-sin(10))+2)^2arcTan(sqrt((2sin(10)/(co
s(10)-sin(10))+2)^2-4)/
2)/180-2sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4) = ~0.801029 square cubits;
* circle chord at bottom of square = 4 cubits; central angle of bottom circle
sector = 2arcTan(2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)) = ~110.908371
degrees; bottom circle sector area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arc
Tan(2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4))/180 = ~5.706397 square cu-
bits; bottom circle segment area = pi(2sin(10)/(cos(10)-sin(10))+2)^2arcTan
(2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4))/180-2sq
rt((2sin(10)/(cos(10)-
sin(10))+2)^2-4) = ~2.952562 square cubits;
* area of bottom square corner outside circle = -pi(2sin(10)/(cos(10)-sin(10))
+2)^2arcTan(2/sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-
4))/360-sqrt((2sin(10)/
(cos(10)-sin(10))+2)^2-4)+4sin(10)/(cos(10)-sin(10))
+4 = ~0.626179 square
cubits; circle chord at top corner of square = sqrt((-sqrt((2sin(10)/(cos
(10)-sin(10))+2)^2-4)-2sin(10)/(cos(10)-sin(10))+2)^
2+(-4sqrt(sin(10)/(cos
(10)-sin(10)))+2)^2) = ~0.245524 cubits; central angle of top square corner
circle sector = -arcTan(sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)/2)-
arcTan
((cos(10)-sin(10))sqrt(sin(10)/(cos(10)-sin(10)))/(c
os(10)/2-sin(10)))+90
= ~5.795988 degrees; top square corner circle sector area = (2sin(10)/(cos
(10)-sin(10))+2)^2(-piarcTan(sqrt((2sin(10)/(cos(10)
-sin(10))+2)^2-4)/2)/
360-piarcTan((cos(10)-sin(10))sqrt(sin(10)/(cos(10)-
sin(10)))/(cos(10)/2-
sin(10)))/360+pi/4) = ~0.298212 square cubits; top square corner circle
segment area = -sqrt(((-sqrt((2sin(10)/(cos(10)-sin(10))+2)^2-4)-2s
in(10)
/(cos(10)-sin(10))+2)^2+(-4sqrt(sin(10)/(cos(10)-sin
(10)))+2)^2)(-(-sqrt
((2sin(10)/(cos(10)-sin(10))+2)^2-4)-2sin(10)/(cos(1
0)-sin(10))+2)^2/4-
(-4sqrt(sin(10)/(cos(10)-sin(10)))+2)^2/4+(2sin(10)/
(cos(10)-sin(10))+2)
^2))/2+(2sin(10)/(cos(10)-sin(10))+2)^2(-piarcTan(sq
rt((2sin(10)/(cos(10)
-sin(10))+2)^2-4)/2)/360-piarcTan((cos(10)-sin(10))s
qrt(sin(10)/(cos(10)-
sin(10)))/(cos(10)/2-sin(10)))/360+pi/4) = ~0.000508 square cubits; area
of top square corner outside circle = sqrt(((-sqrt((2sin(10)/(cos(10)-sin
(10))+2)^2-4)-2sin(10)/(cos(10)-sin(10))+2)^2+(-4sqr
t(sin(10)/(cos(10)-sin
(10)))+2)^2)(-(-sqrt((2sin(10)/(cos(10)-sin(10))+2)^
2-4)-2sin(10)/(cos(10)
-sin(10))+2)^2/4-(-4sqrt(sin(10)/(cos(10)-sin(10)))+
2)^2/4+(2sin(10)/(cos
(10)-sin(10))+2)^2))/2+(2sin(10)/(cos(10)-sin(10))+2
)^2(piarcTan(sqrt((2sin
(10)/(cos(10)-sin(10))+2)^2-4)/2)/360+piarcTan((cos(
10)-sin(10))sqrt(sin(10)
/(cos(10)-sin(10)))/(cos(10)/2-sin(10)))/360-pi/4)+(
-2sqrt(sin(10)/(cos(10)
-sin(10)))+1)(-sqrt((2sin(10)/(cos(10)-sin(10))+2)^2
-4)-2sin(10)/(cos(10)-
sin(10))+2) = ~0.014041 (= 0.0140410224358...) square cubits;
* line segment "y" is also the shortest side of a scalene triangle, with longest
side the circle radius, and adjacent side "a" 100 degrees from vertical center-
line to the end of that same circle radius; thus solving for "a": a = sqrt((-8
sin(10)cos(10)cos(70)+4(sin(10))^2)/(-2sin(10)cos(10
)+1)+(2sin(10)/(cos(10)-sin
(10))+2)^2) = ~2.316912 cubits (2.31691186136...); area of triangle = sin(10)cos
(10)cos(20)/(-sin(10)cos(10)+1/2) = ~0.488455 (0.488455385956...) square cubits;
* segment "y" is shortest side of yet another, slightly smaller scalene triangle
with adjacent side "a" 110 degrees from vertical centerline, and longest side
60 degrees from the same vertical centerline; thus solving for "a": a = sqrt(3)/
(cos(10)-sin(10)) = ~2.135278 (2.13527752148...) cubits; longest side = 2sin(70)
/(cos(10)-sin(10)) = ~2.316912 (2.31691186136...) cubits, which extends 2sin(70)
/(cos(10)-sin(10))-4sqrt(3)/3 = ~0.00751078 cubits beyond intersection w/square;
area of triangle = sqrt(3)sin(10)sin(70)/(cos(10)-sin(10))^2 = ~0.429540 square
cubits (0.429540457576...); the tiny fraction of this triangle outside square is
described by shortest side = sin(10)(2/(cos(10)-sin(10))-4sqrt(3)/(3sin(70))) =
~0.00138794 cubits (0.00138793689527...); longest side = 2sin(70)/(cos(10)-sin
(10))-4sqrt(3)/3 = ~0.00751078 (0.00751078459977...) cubits; adjacent side "a":
a = sqrt(3)(1/(cos(10)-sin(10))-2sqrt(3)/(3sin(70))) = ~0.00692198 cubits (0.00
692197652921...); area of tiny triangle = (sqrt(3)sin(10)(csc(70))^2(sqrt(3)sin
(10)/3-sqrt(3)cos(10)/3+sin(70)/2)(5sqrt(3)sin(10)si
n(70)/6-4sqrt(3)sin(70)cos
(10)/3+sin(10)cos(10)+2(sin(70))^2-(sin(10))^2)+(sin
(10))^2(csc(70))^2(-sqrt(3)
(cos(10)-sin(10))+3sin(70)/2)(-sqrt(3)(cos(10)-sin(1
0))/3+sin(70)/2))/(cos(10)-
sin(10))^2 = ~0.00000451394 square cubits (0.0000045139387711...);
* segment "y" is the base of an isosceles triangle with vertex angle 160 degrees,
leg 2(sin(10))^2/(sin(20)(cos(10)-sin(10))) = ~0.217376439936 cubits, altitude
(sin(10))^2/(cos(10)(cos(10)-sin(10))) = ~0.0377470226626 cubits, and area tan
(10)(sin(10))^2/(cos(10)-sin(10))^2 = ~0.00808065625672 square cubits; segment
"y" is also the diameter of a circle, area pi(sin(10))^2/(cos(10)-sin(10))^2 =
~0.143971899424 square cubits; this small circle is centered at the midpoint of
segment "y", i.e. between the drawing's center of circle and center of square;
* a radial grid of 36 10-degree sectors centered at each endpoint of segment "y"
highlights the many triangles and quadrangles evident in this geometric study;
a layer of about 20% opacity sector color fills makes distinguishing polygons
much easier; primary colors are red, orange, yellow, green, blue, violet, and
magenta; for zodiac equivalents, the following chart includes secondary colors
and polar angles measured in degrees from earth-sun ecliptic west at 0 scorpio:
SOLID COLOR R G B C M Y K sign *
Red 255 0 0 0 100 100 0 aries 150
Red-Orange 255 64 0 0 75 100 0 taurus 180 e
Orange 255 127 0 0 50 100 0 gemini 210
Orange-Yellow 255 191 0 0 25 100 0 cancer 240
Yellow 255 255 0 0 0 100 0 leo 270 s
Green 0 255 0 100 0 100 0 virgo 300
Cyan 0 255 255 100 0 0 0 libra 330
Blue 0 0 255 100 100 0 0 scorpio 0/360 w
Blue-Violet 64 0 255 75 100 0 0 sagittarius 30
Violet 128 0 255 50 100 0 0 capricorn 60
Violet-Magenta 191 0 255 25 100 0 0 aquarius 90 n
Magenta 255 0 255 0 100 0 0 pisces 120
* the 36 decan zodiac divides each of the twelve, 30-degree zodiac sectors into
three equal parts according to the four cardinal elements: water, air, earth,
and fire; cancer, libra, capricorn, and aries, are the cardinal zodiac signs;
scorpio, aquarius, taurus, leo, are fixed; pisces, gemini, virgo, sagittarius
are mutable; thus aries decans are red, yellow, and blue-violet; taurus decans
are red-orange, green, and violet; gemini decans are orange, cyan, and violet-
magenta; cancer decans are orange-yellow, blue, and magenta; leo decans are
yellow, blue-violet, and red; virgo decans are green, violet, and red-orange;
libra decans are cyan, violet-magenta, and orange; scorpio decans are blue,
magenta, and orange-yellow; sagittarius decans are blue-violet, red, and
yellow; capricorn decans are violet, red-orange, and green; aquarius decans
are violet-magenta, orange, and cyan; completing the circle, pisces decans
are magenta, orange-yellow, and blue; this circle is the caelestial zodiac
(caelestinum firmamentum) with its fixed signs at the cardinal directions;
its equator is the earth-sun ecliptic; prime fiducial aldebaran 15 taurus;
* the terrestrial zodiac is centered in the square, with cardinal signs at the
cardinal directions of the earth's rotational axis inclined ~23.4 degrees to
the caelestial equator; as a result this oblique rotating 36-decan zodiac is
at landfall rotated 30 degrees counterclockwise to place aries 180, libra 0,
capricorn 90, and cancer 270; taurus 210, scorpio 30, aquarius 120, and leo
300; gemini 240, sagittarius 60, pisces 150, and virgo 330; in round numbers,
the terrestrial prime fiducial is the great pyramid at 0 gemini(~29tau53:35)
longitude(~6.4 miles due east to 0gem00:00) and 30 north(~29n58:45) latitude;
[end parts 1 - 6; see part 7 - 11a for continuation]
Najnowsze wątki z tej grupy
- kontrole kont przez fiskus
- jednak nie tylko allegro OLX i podobne
- Praca w Monako i podatki
- Chess
- Vitruvian Man - parts 7-11a
- Vitruvian Man - parts 1-6
- Który program do PIT-ów?
- Jak się płaci CIT ?
- Polak nierezydent, dochód w Polsce i PIT
- Przetwarzanie danych
- KSEF - jakies plusy?
- KSeF czy coś zmieni dla zwykłych ludzi?
- KSEF demo jakie opinie?
- Jak to jest z PIT-0 dla seniora
- In-vitro
Najnowsze wątki
- 2024-07-25 kontrole kont przez fiskus
- 2024-07-02 jednak nie tylko allegro OLX i podobne
- 2024-06-26 Praca w Monako i podatki
- 2024-05-11 Chess
- 2024-05-11 Vitruvian Man - parts 7-11a
- 2024-05-11 Vitruvian Man - parts 1-6
- 2024-04-30 Który program do PIT-ów?
- 2024-04-26 Jak się płaci CIT ?
- 2024-04-11 Polak nierezydent, dochód w Polsce i PIT
- 2024-03-05 Przetwarzanie danych
- 2024-01-25 KSEF - jakies plusy?
- 2024-01-18 KSeF czy coś zmieni dla zwykłych ludzi?
- 2024-01-16 KSEF demo jakie opinie?
- 2023-12-11 Jak to jest z PIT-0 dla seniora
- 2023-11-30 In-vitro